Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(3): 2261-2278, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207332

RESUMO

Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.


Assuntos
Lipossomos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Receptores de Antígenos Quiméricos , Sepse , Infecções Estafilocócicas , Animais , Camundongos , Receptores de Antígenos Quiméricos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , RNA Mensageiro , Antibacterianos/farmacologia , Macrófagos , Sepse/tratamento farmacológico , Lipídeos/farmacologia
2.
Adv Mater ; 36(13): e2311109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127403

RESUMO

Glioblastoma multiforme (GBM) is notoriously resistant to immunotherapy due to its intricate immunosuppressive tumor microenvironment (TME). Dysregulated cholesterol metabolism is implicated in the TME and promotes tumor progression. Here, it is found that cholesterol levels in GBM tissues are abnormally high, and glioma-supportive macrophages (GSMs), an essential "cholesterol factory", demonstrate aberrantly hyperactive cholesterol metabolism and efflux, providing cholesterol to fuel GBM growth and induce CD8+ T cells exhaustion. Bioinformatics analysis confirms that high 7-dehydrocholesterol reductase (DHCR7) level in GBM tissues associates with increased cholesterol biosynthesis, suppressed tumoricidal immune response, and poor patient survival, and DHCR7 expression level is significantly elevated in GSMs. Therefore, an intracavitary sprayable nanoregulator (NR)-encased hydrogel system to modulate cholesterol metabolism of GSMs is reported. The degradable NR-mediated ablation of DHCR7 in GSMs effectively suppresses cholesterol supply and activates T-cell immunity. Moreover, the combination of Toll-like receptor 7/8 (TLR7/8) agonists significantly promotes GSM polarization to antitumor phenotypes and ameliorates the TME. Treatment with the hybrid system exhibits superior antitumor effects in the orthotopic GBM model and postsurgical recurrence model. Altogether, the findings unravel the role of GSMs DHCR7/cholesterol signaling in the regulation of TME, presenting a potential treatment strategy that warrants further clinical trials.


Assuntos
Neoplasias Encefálicas , Dissacarídeos , Glioblastoma , Glioma , Glucuronatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos/metabolismo , Hidrogéis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioma/patologia , Macrófagos/metabolismo , Imunoterapia , Colesterol , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo
3.
J Environ Manage ; 348: 119346, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866187

RESUMO

The ecological floating bed (EFB) has been used extensively for the purification of eutrophication water. However, the traditional EFB (T-EFB) often exhibits a decline in nitrogen and phosphorus removal because of the limited adsorption capacity of fillers and inadequate electron donors. In the present study, a series of electrolysis-ecological floating beds (EC-EFBs) were constructed to investigate the decontamination performance of conventional pollutants. EC-EFB outperformed T-EFB in terms of nitrogen and phosphorus removal. Its removal efficiency of total nitrogen and total phosphorus was 20.51-32.95% and 45.06-96.20%, which were higher than that in T-EFB.. Moreover, the plants in EC-EFB demonstrated higher metabolic activity than those in T-EFB. Under the electrolysis condition of 0.51 mA/cm2 for 24 h, the malondialdehyde content and superoxide dismutase activity in EC-EFB were 6.08 nmol/g and 22.61 U/g, which were significantly lower compared to T-EFB (38.65 nmol/g and 26.13 U/g). And the soluble protein content of plant leaves increased from 3.31 mg/g to 5.72 mg/g in EC-EFB. Microbial analysis revealed that electrolysis could significantly change the microbial community and facilitate the proliferation of nitrogen-functional microbes, such as Thermomonas, Hydrogenophaga, Deinococcus, and Zoogloea. It is important to highlight that the hydrogen evolution reaction at the cathode area facilitated phosphorus removal in EC-EFB, thereby inhibiting phosphorus leaching. This study provides a promising and innovative technology for the purification of eutrophic water.


Assuntos
Nitrogênio , Fósforo , Água , Biofilmes
4.
BMC Cardiovasc Disord ; 23(1): 362, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464328

RESUMO

BACKGROUND: Venous thromboembolism (VTE) is a substantial contributor to the global burden of disease. Observational studies have suggested that leisure sedentary behaviours (LSB) are related to the risk of VTE; however, the causal role of LSB in VTE remains unclear. METHODS: Using data obtained from genome-wide association studies in the UK Biobank (N = 422,218), we identified 84, 21, and 4 single nucleotide polymorphisms (SNPs) related to sedentary television (TV) watching, computer use, and driving, respectively. These SNPs were employed as instrumental variables. Summary statistics for SNP-VTE associations was obtained from the FinnGen study (5,403 cases and 130,235 controls). Two-sample Mendelian randomisation (MR) analyses were performed using inverse-variance weighted (IVW), MR-Egger,weighted median, and weighted mode approaches. Sensitivity analyses were conducted to ensure robustness of the results. RESULTS: The main IVW approach demonstrated a positive association between the genetically predicted sedentary TV watching and the risk of VTE [odds ratio (OR):1.35, 95% confidence interval (CI):1.02-1.80, P = 0.039]. However, no significant association was observed for genetically predicted sedentary computer use or driving and VTE risk. The results from our series of sensitivity analyses, including Cochran's Q test, MR-Egger intercept test, and MR-Pleiotropy RESidual Sum and Outlier method, further supported these findings. CONCLUSION: This study provides evidence of an association between genetically predicted sedentary TV watching and the risk of VTE. Further studies are required to elucidate the underlying causal mechanisms.


Assuntos
Comportamento Sedentário , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Nonoxinol , Polimorfismo de Nucleotídeo Único
5.
J Control Release ; 360: 718-733, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451547

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent and lethal disease, and tumor regression rarely occurs in advanced HCC patients due to limited effective therapies. Given the enrichment of macrophages in HCC and their role in tumor immunity, transforming them into chimeric antigen receptor macrophages (CAR-Ms) is thought to increase HCC cell-directed phagocytosis and tumoricidal immunity. To test this hypothesis, mRNA encoding CAR is encapsulated in a lipid nanoparticle (LNP) that targets liver macrophages. Notably, the LNPs adsorb specific plasma proteins that enable them to target HCC-associated macrophages. Moreover, mRNA encoding Siglec-G lacking ITIMs (Siglec-GΔITIMs) is codelivered to liver macrophages by LNP to relieve CD24-mediated CAR-Ms immune suppression. Mice treated with LNPs generating CAR-Ms as well as CD24-Siglec-G blockade significantly elevate the phagocytic function of liver macrophages, reduce tumor burden and increase survival time in an HCC mouse model. Arguably, our work suggests an efficacious and flexible strategy for the treatment of HCC and warrants further rigorous evaluation in clinical trials.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Imunoterapia , Macrófagos/metabolismo , Fagocitose , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
6.
Acta Biomater ; 166: 512-523, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150276

RESUMO

Immune evasion caused by the paucity of MHCI is a prominent characteristic of pancreatic adenocarcinoma (PAAD), which is thought to underlie dysfunctional even absent adaptive T cell immunity and is responsible for ineffective immunotherapy. Here, we report a ROS-responsive DNA nano-orchestrator to cascade reverse MHC I-associated immune evasion and boost anti-tumor T cell stimulation, stimulating the activation of tumoricidal immunity against PAAD. Chloroquine phosphate (CQP) as an autophagy inhibitor was first encapsulated with ferritin, and via DNA modular self-assembly technology, the generated ferritin nanocores (FNC) were then caged into ROS-responsive CpG-DNA nanoframe. After systemic injection, the FNC-laden DNA nanoframe (FNC@NF) was passively enriched in tumor tissues in which the DNA nanoframe was cleaved upon the ROS stimulation. Oligodeoxynucleotide (ODN) with CpG motifs was detached and functioned as a TLR9 agonist. The liberated FNC was then endocytosed in an actively targeted manner by binding to transferrin receptor 1. In the lysosome, CQP was burst released from FNC due to acid-triggering. Through CQP-mediated autophagy abrogation, MHC-I molecules were preserved. We demonstrated that cascade inhibiting autophagy and boosting TLR9 stimulation via our proposed DNA-based hybrid nanosystem restored MHC I on the tumor cell surface and reshaped the antigen presentation of DCs, and ultimately reversed immune evasion and synergistically reinforced the activation of cytotoxic T cells against PAAD cells. In sum, our work provides an alternative strategy for cascade reversing immune evasion and boosting anti-tumor T cell stimulation and holds great potential for pancreatic cancer immunotherapy. STATEMENT OF SIGNIFICANCE: A DNA nano-orchestrator was created by sequentially assembling chloroquine phosphate-laden ferritin nanocores with ROS-responsive CpG-DNA nanoframe. Through cascade inhibiting autophagy and boosting TLR9 stimulation, the nano-orchestrator efficiently reversed MHC I-associated immune evasion and augmented anti-tumor T cell stimulation, which ultimately activated tumoricidal immunity against pancreatic adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Receptor Toll-Like 9/metabolismo , Evasão da Resposta Imune , Espécies Reativas de Oxigênio/metabolismo , Imunoterapia , Oligodesoxirribonucleotídeos/farmacologia , Ferritinas , Neoplasias Pancreáticas
7.
Int J Pharm ; 640: 123025, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164186

RESUMO

Small cell lung cancer (SCLC) is one of the most devastating type of human lung cancer and has a high propensity to metastasize into the brain. Cuproptosis recently has been defined as a copper dependent cell death, offers a new lens to develop the novel copper-based nanostructure inducing cuproptosis for suppressing tumor growth and metastasis. Here, we report a syphilis mimetic TP0751-peptide decorated stem cell membrane-coated copper-based metal organic framework (Cu-MOF) nanodelivery system for SCLC brain metastasis. The Cu-MOF is employed as nanocarrier to support siRNA with high loading efficiency, and its pH sensitivity facilitates endosomal disruption upon cellular uptake. Furthermore, the cell membrane coating Cu-MOF presents a good biocompatibility, high BBB transcytosis, and specific uptake by tumor cells within the brain. In vitro and in vivo trials have shown that TP-M-Cu-MOF/siATP7a exhibited high silencing efficiency against target gene, specifically blocked copper trafficking, increased copper intake, triggered cuproptosis, and improved therapeutic efficacy in SCLC brain metastasis tumor-bearing mice. Overall, the biomimetic nanodelivery platform presented here further offers a promising way of orchestrating gene therapy to target copper-dependent signalling for reprogramming copper metabolism and cuproptosis-based synergistic therapy in mice bearing brain metastases.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Sífilis , Humanos , Animais , Camundongos , Cobre , Biomimética , Apoptose
8.
Sci Adv ; 9(22): eadg3365, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256944

RESUMO

Tracking and eradicating Staphylococcus aureus in the periprosthetic microenvironment are critical for preventing periprosthetic joint infection (PJI), yet effective strategies remain elusive. Here, we report an implant nanoparticle coating that locoregionally yields bactericidal super chimeric antigen receptor macrophages (CAR-MΦs) to prevent PJI. We demonstrate that the plasmid-laden nanoparticle from the coating can introduce S. aureus-targeted CAR genes and caspase-11 short hairpin RNA (CASP11 shRNA) into macrophage nuclei to generate super CAR-MΦs in mouse models. CASP11 shRNA allowed mitochondria to be recruited around phagosomes containing phagocytosed bacteria to deliver mitochondria-generated bactericidal reactive oxygen species. These super CAR-MΦs targeted and eradicated S. aureus and conferred robust bactericidal immunologic activity at the bone-implant interface. Furthermore, the coating biodegradability precisely matched the bone regeneration process, achieving satisfactory osteogenesis. Overall, our work establishes a locoregional treatment strategy for priming macrophage-specific bactericidal immunity with broad application in patients suffering from multidrug-resistant bacterial infection.


Assuntos
Receptores de Antígenos Quiméricos , Staphylococcus aureus , Animais , Camundongos , Osseointegração , Antibacterianos/farmacologia , Macrófagos/microbiologia
9.
J Control Release ; 357: 620-629, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061194

RESUMO

Neutrophil extracellular traps (NETs) are web-like chromatin structures that are coated with granule proteins and trap microorganisms. However, NETs can damage the host tissue, contribute to the development of autoimmunity and lead to other dysfunctional outcomes in noninfectious diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), diabetes, atherosclerosis, vasculitis, thrombosis, and cancer. As a potential therapeutic approach, targeted ablation of neutrophil extracellular traps is of utmost importance for the treatment of NET-associated diseases. Here, the specific interaction between CCDC25 and NETs was exploited to produce biomimetic CCDC25-overexpressing cell membrane hybrid liposomes capable of targeting NETs in NET-associated diseases. The hybrid liposomes were constructed by fusing cell membrane nanovesicles derived from genetically engineered cells, which stably express CCDC25, and the resulting cell membrane hybrid liposomes exhibited enhanced affinity for NETs in two different NET-associated disease models. Furthermore, after encapsulation of DNase I in the liposomes, the nanoformulation efficiently eliminated NETs and significantly suppressed the recruitment of neutrophils. Overall, we present a bionic nanocarrier that specifically targets NETs in vivo and successfully inhibits colorectal cancer liver metastases; importantly, this could be a promising therapeutic approach for the treatment of NET-associated diseases.


Assuntos
Neoplasias Colorretais , Armadilhas Extracelulares , Neoplasias Hepáticas , Humanos , Armadilhas Extracelulares/metabolismo , Lipossomos/metabolismo , Desoxirribonuclease I/metabolismo , Neoplasias Hepáticas/metabolismo , Membrana Celular , Neoplasias Colorretais/metabolismo
10.
J Nanobiotechnology ; 21(1): 56, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805678

RESUMO

Locoregional delivery of chimeric antigen receptor (CAR)-modified T (CAR-T) cells has emerged as a promising strategy for brain tumors. However, the complicated ex vivo cell manufacturing procedures and the rapid progression of the disease have limited its broader applications. Macrophages (MΦs) exhibit unique effector functions and a high degree of infiltration within the solid tumor microenvironment (TME), especially in the brain, where MΦs function as structural support, and the main immune effector cells of the CNS represent 5-12% of brain cells. Here, we report a synthetic universal DNA nanocarrier for in situ genetic editing of intratumoral MΦs with an ErbB2-specific CAR to direct their phagocytic activity towards tumors and subsequently initiate a locoregional antitumor immune response. Specifically, we demonstrated that when delivered locoregionally, the RP-182 peptide, located in the shell of a nanoparticle, targeted MΦs and reprogrammed M2-like tumor-associated macrophages (TAMs) to an antitumor M1-like phenotype. Subsequently, the CAR gene-laden DNA nanocomplex can be used to introduce ErbB2-targeted CAR, and the generated CAR-MΦs then act as "living" cures, thereby serially clearing the invasive tumor cells. Our work demonstrates a practical antitumor immunotherapy for brainstem gliomas (BSGs) that may be broadly applicable for patients suffering from other ErbB2-positive solid malignancies.


Assuntos
Convecção , Glioma , Humanos , Glioma/terapia , Macrófagos , Imunoterapia , Tronco Encefálico , Microambiente Tumoral , Receptor ErbB-2/genética
11.
Adv Sci (Weinh) ; 10(12): e2206893, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775865

RESUMO

Tumor protein 53 (TP53) mutation in bladder carcinoma (BC), upregulates the transcription of carbamoyl phosphate synthetase 1 (CPS1), to reduce intracellular ammonia toxicity. To leverage ammonia combating BC, here, an intravesically perfusable nanoporter-encased hydrogel system is reported. A biomimetic fusogenic liposomalized nanoporter (FLNP) that is decorated with urea transporter-B (UT-B) is first synthesized with protonated chitosan oligosaccharide for bladder tumor-targeted co-delivery of urease and small interfering RNA targeting CPS1 (siCPS1). Mussel-inspired hydrogel featured with dual functions of bio-adhesion and injectability is then fabricated as the reservoir for intravesical immobilization of FLNP. It is found that FLNP-mediated UT-B immobilization dramatically induces urea transportation into tumor cells, and co-delivery of urease and siCPS1 significantly boosts ammonia accumulation in tumor inducing cell apoptosis. Treatment with hybrid system exhibits superior anti-tumor effect in orthotopic bladder tumor mouse model and patient-derived xenograft model, respectively. Combined with high-protein diet, the production of urinary urea increases, leading to an augmented intracellular deposition of ammonia in BC cells, and ultimately an enhanced tumor inhibition. Together, the work establishes that cascade modulation of ammonia in tumor cells could induce tumor apoptosis and may be a practical strategy for eradication of TP53-mutated bladder cancer.


Assuntos
Carcinoma , Neoplasias da Bexiga Urinária , Camundongos , Animais , Humanos , Administração Intravesical , Amônia/metabolismo , Bexiga Urinária , Hidrogéis , Urease , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Neoplasias da Bexiga Urinária/terapia , Ureia/metabolismo
12.
Nat Commun ; 14(1): 817, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781864

RESUMO

Massive intra-articular infiltration of proinflammatory macrophages is a prominent feature of rheumatoid arthritis (RA) lesions, which are thought to underlie articular immune dysfunction, severe synovitis and ultimately joint erosion. Here we report an efferocytosis-informed nanoimitator (EINI) for in situ targeted reprogramming of synovial inflammatory macrophages (SIMs) that thwarts their autoimmune attack and reestablishes articular immune homeostasis, which mitigates RA. The EINI consists of a drug-based core with an oxidative stress-responsive phosphatidylserine (PtdSer) corona and a shell composed of a P-selectin-blocking motif, low molecular weight heparin (LMWH). When systemically administered, the LMWH on the EINI first binds to P-selectin overexpressed on the endothelium in subsynovial capillaries, which functions as an antagonist, disrupting neutrophil synovial trafficking. Due to the strong dysregulation of the synovial microvasculature, the EINI is subsequently enriched in the joint synovium where the shell is disassembled upon the reactive oxygen species stimulation, and PtdSer corona is then exposed. In an efferocytosis-like manner, the PtdSer-coroneted core is in turn phagocytosed by SIMs, which synergistically terminate SIM-initiated pathological cascades and serially reestablish intra-articular immune homeostasis, conferring a chondroprotective effect. These findings demonstrate that SIMs can be precisely remodeled via the efferocytosis-mimetic strategy, which holds potential for RA treatment.


Assuntos
Artrite Reumatoide , Selectina-P , Camundongos , Animais , Selectina-P/metabolismo , Heparina de Baixo Peso Molecular , Articulações/metabolismo , Membrana Sinovial/metabolismo
13.
Adv Mater ; 35(11): e2210262, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36575563

RESUMO

Th17/Treg imbalance is closely related to the occurrence and development of multiple sclerosis (MS), and the transdifferentiation of Th17 cells into Treg cells may contribute to the resolution of inflammation, presenting a therapeutic strategy for MS. To modulate this phenotypic shift in situ, a "Trojan horse"-like hybrid system, nanocapsule-coupled Th17 cells, is reported for MS treatment. Following intravenous injection into MS mice, the hybrid system efficiently transmigrates across the blood-brain barrier and homes to the inflamed MS niche. (Aminooxy)-acetic acid, a transdifferentiation inducer, is locally released upon the production of ROS and in turn taken up by Th17 cells. It is demonstrated that the Trojan horse hybrid system enables in situ phenotypic transdifferentiation of Th17 cells into anti-inflammatory Treg cells. This phenotypic conversion leads to a domino-like immune response that is conducive to MS therapy. Overall, this work highlights a new pathway for accurate modulation of the phenotypes of adoptively transferred cells in situ, from proinflammatory to anti-inflammatory for MS therapy, and may be broadly applicable for patients suffering from other autoimmune diseases.


Assuntos
Esclerose Múltipla , Nanocápsulas , Camundongos , Animais , Esclerose Múltipla/tratamento farmacológico , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Fenótipo
14.
Sci Transl Med ; 14(656): eabn1128, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35921473

RESUMO

Glioblastoma multiforme (GBM) remains incurable despite aggressive implementation of multimodal treatments after surgical debulking. Almost all patients with GBM relapse within a narrow margin around the initial resected lesion due to postsurgery residual glioma stem cells (GSCs). Tracking and eradicating postsurgery residual GSCs is critical for preventing postoperative relapse of this devastating disease, yet effective strategies remain elusive. Here, we report a cavity-injectable nanoporter-hydrogel superstructure that creates GSC-specific chimeric antigen receptor (CAR) macrophages/microglia (MΦs) surrounding the cavity to prevent GBM relapse. Specifically, we demonstrate that the CAR gene-laden nanoporter in the hydrogel can introduce GSC-targeted CAR genes into MΦ nuclei after intracavity delivery to generate CAR-MΦs in mouse models of GBM. These CAR-MΦs were able to seek and engulf GSCs and clear residual GSCs by stimulating an adaptive antitumor immune response in the tumor microenvironment and prevented postoperative glioma relapse by inducing long-term antitumor immunity in mice. In an orthotopic patient-derived glioblastoma humanized mouse model, the combined treatment with nanoporter-hydrogel superstructure and CD47 antibody increased the frequency of positive immune responding cells and suppressed the negative immune regulating cells, conferring a robust tumoricidal immunity surrounding the postsurgical cavity and inhibiting postoperative glioblastoma relapse. Therefore, our work establishes a locoregional treatment strategy for priming cancer stem cell-specific tumoricidal immunity with broad application in patients suffering from recurrent malignancies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Receptores de Antígenos Quiméricos , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Glioma/patologia , Glioma/terapia , Hidrogéis , Macrófagos/patologia , Camundongos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Adv Mater ; 34(14): e2107506, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146813

RESUMO

Idiopathic pulmonary fibrosis (IPF), a lethal respiratory disease with few treatment options, occurs due to repetitive microinjuries to alveolar epithelial cells (AECs) and progresses with an overwhelming deposition of extracellular matrix (ECM), ultimately resulting in fibrotic scars and destroyed the alveolar architecture. Here, an inhaled ribosomal protein-based mRNA nanoformulation is reported for clearing the intrapulmonary ECM and re-epithelializing the disrupted alveolar epithelium, thereby reversing established fibrotic foci in IPF. The nanoformulation is sequentially assembled by a ribosomal protein-condensed mRNA core, a bifunctional peptide-modified corona and keratinocyte growth factor (KGF) with a PEGylated shielding shell. When inhaled via a nebulizer, the nanoformulations carried by microdrops are deposited in the alveoli, and penetrate into fibrotic foci, where the outer KGFs are detached after matrix metalloproteinase 2 (MMP2) triggering. The RGD motif-grafted cores then expose and specifically target the integrin-elevated cells for the intracellular delivery of mRNA. Notably, repeated inhalation of the nanoformulations accelerates the clearance of locoregional collagen by boosting the intralesional expression of MMP13 and alveolar re-epithelialization mediated by KGFs, which synergistically ameliorates the lung function of a bleomycin-induced murine model. Therefore, this work provides an alternative mRNA-inhalation delivery strategy, which shows great potential for the treatment of IPF.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Metaloproteinase 2 da Matriz/genética , Camundongos , RNA Mensageiro , Proteínas Ribossômicas
16.
Theranostics ; 10(26): 11998-12010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204325

RESUMO

Rationale: Vascular abnormality stemming from the hypoxia-driven elevation of proangiogenic factors is a hallmark for many solid malignant tumors, including colorectal cancer (CRC) and its liver metastasis. We report a hypoxia-triggered liposome-supported metal-polyphenol-gene bio-nanoreactor to tune the proangiogenic factor-mediated immunotolerance and synergize the elicited tumoricidal immunity for CRC treatment. Methods: With the aid of polyphenol gallic acid, Cu2+ ion-based intracellular bio-nanoreactor was synthesized for the delivery of small interfering RNA targeting vascular endothelial growth factor and then cloaked with a hybrid liposomal membrane that harbored a hypoxia-responsive azobenzene derivative. In hypoxic tumor, the liposomal shell disintegrated, and a shrunk-size bio-nanoreactor was burst released. Intracellularly, Cu2+ from the bio-nanoreactor catalyzed a Fenton-like reaction with glutathione, which efficiently converted H2O2 to •OH and enabled a chemodynamic therapy (CDT) in tumor sites. With the alleviation of proangiogenic factor-mediated immunotolerance and high production of CDT-induced tumor-associated antigens, robust tumoricidal immunity was co-stimulated. Results: With colorectal tumor and its liver metastasis models, we determined the underlying mechanism of proangiogenic factor-mediated immunotolerance and highlighted that the liposomal bio-nanoreactor could create positive feedback among the critical players in the vascular endothelium and synergize the elicited tumoricidal immunity. Conclusion: Our work provides an alternative strategy for exerting efficient tumoricidal immunity in the proangiogenic factor-upregulated subpopulation of CRC patients and may have a wide-ranging impact on cancer immune-anti-angiogenic complementary therapy in clinics.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Hipóxia Tumoral/efeitos dos fármacos , Inibidores da Angiogênese/administração & dosagem , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Cobre/química , Sinergismo Farmacológico , Feminino , Ácido Gálico , Humanos , Lipossomos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Nanopartículas Metálicas/química , Camundongos , Polifenóis/química , RNA Interferente Pequeno/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica/métodos , Evasão Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Hipóxia Tumoral/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Control Release ; 324: 574-585, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32473178

RESUMO

Bioinformatically triple negative breast cancer (TNBC) and colon adenocarcinoma (COAD), two typical "cold" cancers, were found overexpressed PD-L1 and CD47 respectively but neither of them showed satisfied response on its corresponding immune checkpoint blockade (ICB) in clinic. The initial immunotherapeutic resistance to ICB was essentially attributed to the so-called "cold" tumor immune milieu (TIM). To overcome tumor immunological tolerance against ICBs, here we report a versatile nano-modulator for point-to-point counteracting the immune-suppressors meanwhile boosting tumor T cell infiltration. Small interfering RNA targeting indoleamine 2,3-dioxygenase-1 was first co-delivered with gemcitabine using our lab-made biocompatible nanocages for relieving the immune brakes related to regulatory T cells and myeloid-derived suppressor cells. O2-producible mineralization was then tattooed on the surface of the nanocarriers to alleviate the immune inhibition of M2 macrophages. Followed with the decoration of therapeutic ICB antibodies on the mineralized shell, a versatile nano-modulator was constructed. TNBC and COAD were employed to evaluate the tumoricidal efficacy of the nano-modulator that decorated with aPD-L1 and aCD47, respectively. Our nano-modulator demonstrated multipotencies in eliciting a "hot" TIM and greatly potentiated ICB treatment for these "cold" malignancies. The strung expansibility of the nano-modulator may be also conducive in addressing the failure of more other ICBs on the non-responsive subpopulation of patients despite the corresponding immune checkpoint highly expressed in tumors.


Assuntos
Imunoterapia , Neoplasias de Mama Triplo Negativas , Humanos , Tolerância Imunológica , Linfócitos T Reguladores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...